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Abstract— The closed set assumption, where training classes are
fixed at inference, is often impractical as deployed models face
open-set conditions with unknown classes. This challenge drives
the field of Open-Set Recognition (OSR), which aims to identify
unknown samples during inference. A common approach to OSR
involves training on exemplars of unknown objects (also referred
to as known unknowns), which are examples that do not belong
to the closed set of known classes. However, this is infeasible for
methods that rely solely on the training samples of the known
classes. For such cases, we show that the OSR problem can be
effectively tackled by combining the decision confidences of two
networks: one trained with softmax cross-entropy and the other
with tuplet loss using class anchors. We show that the proposed
approach outperforms individual methods across OSR bench-
marks, maintaining correct classification and high confidence for
known samples while effectively rejecting unknowns.

I. INTRODUCTION

It is well known that deep learners in recent years have
shown the capacity to achieve or even surpass that of human
level performance [1]. This performance however is typically
achieved under the closed set assumption in which the classes
used for training are fixed and presumed to be the same
classes encountered during testing. In many practical applica-
tions however, models are deployed under open-set conditions
where the classes used for training are only a small subset of
the infinite surrounding world. In safety critical applications
(e.g., autonomous driving) the model must have the ability
to separate the encountered unknown classes from the known
classes present in the training data.

Conventionally, deep learners struggle when operating in
open-set conditions as they tend to confidently map unknown
classes to the known class decision space [2]. This motivates
the study of Open-Set Recognition [3] in which we seek to
extend autonomous systems to operate under these open-set
conditions by giving them the ability to recognize the known
classes and identity all other classes as unknown.

Early solutions to the open-set recognition problem rely on
the use of known unknowns [3], [4] during training in which a
small set of unknowns or general background classes is used
during training to map non-relevant classes to a generic ”other”
category [5]. The use of such known-unknowns may not al-
ways be feasible however, or lead to an poor representation of

the unknown space as it is impossible to fully encapsulate the
infinite unknown world via a small representative subset. Thus,
we must seek solutions that rely only on known classes during
training while maintaining robust performance for unknown
detection and rejection.

Such solutions that only make use of known classes during
training can generally be grouped in one of two categories:
softmax produced probability analysis [6], [3], [4], [7] or
prototype-based methods [8], [9], [10], [11]. The softmax-
based methods make the distinction between known and
unknown by either manipulating the logits produced by a
network before the softmax function or modifying the softmax
probabilities directly such that known samples have signif-
icantly higher probability than unknown samples. Protype-
based methods rely on representing the known classes by a
single point in the latent space known as a prototype (or
anchor) and proceed to make the declaration of known or
unknown based on distance to respective prototypes. While
each category is successful in their own regard, the union
of both methodologies into a single solution has remained
unstudied and it is unknown if the combination of each
methodology yields superior results.

In this work, we combine softmax-based and prototype-
based methods to perform joint probability estimation for
de- termining if a sample is known or unknown. We take
inspiration from [12] and train one net- work with cross-
entropy for softmax probabilities and a sec- ond to minimize a
sample’s distance to its latent-space anchor. Using a Bayesian
framework, we estimate the joint probabil- ity of an input be-
longing to a declared class and the closed set of knowns. This
joint probability is high for known classes and approaches zero
for unknowns. Our method outperforms the individual methods
of softmax and prototype method, as well as modern state-of-
the-art solutions on standard open-set recognition benchmarks.

II. METHODOLOGY

Our method approach consists of two neural networks:
a main classifier whose output is treated as p(y|x), and a
secondary network whose output is a proxy for p(K|y, x). We
can then estimate the joint probability that the main classifier
predicts class y and the secondary classifier agrees with the



Fig. 1: We train two networks: the first ϕmain to output the logit z that is then converted to a softmax probability, and the
second ϕsecondary to output distance d to class protypes in the latent space that is then converted to a softmin probability. After
ϕmain obtains the max prediction probability for class c, we condition ϕsecondary on the prediction of ϕmain by analyzing
ϕsecondary’s probability prediction for class c. A joint estimation is then performed and passed to discriminator h to make the
declartion of known or unknown.

assignment. From this joint probability, we can i) determine
whether a sample is known or unknown and ii) if it is known,
its corresponding class. An overview of our approach is shown
in Figure 1.

A. The Main Classifier

Consider a neural network ϕmain : x → z(1) ∈ RN that
maps the input image x to some logit z(1) in N -dimensional
space. This logit z(1) is then passed through the softmax
function to obtain a probability vector as follows

softmax(z
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z
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j

= p(ŷi|x) (1)

where ŷi is the prediction of class i from ϕmain with cor-
responding probability value p(ŷi|x). This formulation of the
main classifier is the typical scenario when training with the
cross-entropy loss function

LCE(x, y) = −
N∑
j=1

yj log p(ŷj |x). (2)

where y is the one-hot vector encoding of the ground truth
class.

Previous works [13], [6] argue that using these probabilities
produced by cross-entropy trained networks is satisfactory
for unknown detection, however more recent works [14], [9]
suggest that a logit’s distance to class anchors in the latent
space not formed by the cross-entropy loss tend to outperform
these purely cross-entropy based methods. Thus, we seek to
leverage the power of these prototype methods in conjunction
with the standard cross-entropy training described above.

B. The Secondary Network

The secondary network ϕsecondary is trained differently
from the main classifier, following the Class Anchor Clustering
(CAC) approach from [8]. It maps input x to a logit vector
z(2), which is compared to fixed class anchor points ci in
N -dimensional space to compute a distance vector d. These
anchor points are scaled standard basis vectors (not learned),

and the training encourages z(2) to be close to its correspond-
ing class anchor while far from others. This is achieved using
a modified Tuplet loss:

LT (x, y) = log

1 +

N∑
j ̸=y

edy−dj

 (3)

and a penalty term

LA(x, y) = ||z(2) − cy||2 = dy (4)

combined into the CAC loss: LCAC = LT (x, y) + λLA(x, y),
where λ is a hyperparameter.

To convert the outputs of ϕsecondary into class probabilities,
we apply a softmin over the distance vector d, assigning higher
probability to the closest anchor:

softmin(di) =
e−di∑N
j=1 e

−dj

= p(ỹi|x) (5)

This probability is used alongside the main classifier’s
confidence to compute a joint estimate, allowing us to decide
whether to accept the classification or reject x as unknown.

C. Joint Probability Estimation for Unknown Rejection

To decide whether to accept the classifiers’ assignment of
input x to class ci or reject it as unknown, we establish a
class-conditional relationship between the outputs of ϕmain

and ϕsecondary. Specifically, for ϕmain’s prediction of class i,
we use the associated confidence score p(ŷi|x) and combine
it with ϕsecondary’s output probability p(ỹi|ŷi, x) to compute
the joint probability that x truly belongs to class i:

p(ŷi, ỹi|x) = p(ỹi|ŷi, x)p(ŷi|x) (6)

This joint probability is then compared to a threshold τ
to make the final classification decision: if the probability
exceeds τ , x is assigned to class i; otherwise, it is labeled
as unknown.

This approach can be interpreted as measuring the agree-
ment between the two networks. High joint probability im-
plies that both networks are confident and aligned in their



Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 Tiny-Imagenet

Softmax 0.7855 ± 0.012 0.8719 ± 0.010 0.7194 ± 0.009 0.7354 ± 0.016 0.7309 ± 0.018 0.5908 ± 0.014
CAC 0.8187 ± 0.011 0.9038 ± 0.015 0.7156 ± 0.002 0.7425 ± 0.013 0.7721 ± 0.002 0.5452 ± 0.036

Good Classifier 0.9894 ± 0.001 0.9058 ± 0.012 0.7479 ± 0.008 0.7734 ± 0.014 0.7720 ± 0.002 0.6291 ± 0.016
ARPL+CS 0.9900 ± 0.001 0.9342 ± 0.005 0.7813 ± 0.002 0.8346 ± 0.005 0.8241 ± 0.004 0.6402 ± 0.023

SLCPL [15] 0.8751 ± 0.019 0.8931 ± 0.031 0.7741 ± 0.11 0.8394 ± 0.017 0.8249 ± 0.021 0.6732 ± 0.014

Ours 0.9854 ± 0.001 0.9279 ± 0.001 0.7906 ± 0.0004 0.8436 ± 0.004 0.8427 ± 0.001 0.6848 ± 0.001
Ours (Reversed) 0.9777 ± 0.012 0.9267 ± 0.005 0.7891 ± 0.0009 0.8267 ± 0.015 0.8262 ± 0.015 0.6941 ± 0.009

TABLE I: Reported AUROC score means and standard deviations averaged over 3 runs.
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Fig. 2: CIFAR+10 probability histograms for (a) main classifier, (b) secondary classifier, and (c) joint estimation.

prediction, favoring acceptance of x as a known class. Con-
versely, disagreement or low confidence leads to a low joint
probability, prompting rejection as unknown. Viewed this way,
the method also serves as a form of probabilistic calibration
between the classifiers.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

Datasets. We test our method on six commonly used
datasets in open-set recognition literature. In the MNIST and
SVHN datasets, we randomly choose 6 classes as known
and the remaining 4 classes are treated as unknown. In the
CIFAR10 experiments, we treat the 6 non-vehicle classes as
known classes the the remaining 4 vehicle classes as unknown.
CIFAR+M experiments consider the 4 vehicle classes from
CIFAR10 as known and randomly samples M disjoint classes
from the CIFAR100 dataset. Lastly, for the Tiny-Imagenet
experiments we randomly select 20 classes as the known
classes and consider the remaining 180 classes as unknown.

Metrics. We use the standard area under the ROC curve
(AUROC) to evaluate the performance of all compared meth-
ods. The AUROC performance evaluation lends itself as a
threshold independent metric plotting the true positive rate
against the false positive rate by varying a threshold. It may
be interpreted as the probability a positive (known) sample is
assigned a higher detection score than a negative (unknown)
sample.

Compared Methods. We compare our method to four
open-set recognition approaches with similar methodological
foundations. The softmax baseline [6] sets a threshold on class
probabilities after applying the softmax function. Class Anchor
Clustering (CAC) [8] introduces a loss that encourages known

classes to cluster around anchor points in the latent space,
leaving unknowns to occupy the remaining regions. ARPL+CS
[9] enhances this by training reciprocal points for each class
and generating confusing samples to promote separation in
latent space, using distance to reciprocal points to assess
class membership. Lastly, [7] argues that a strong closed-set
classifier alone can suffice, using the maximum logit score to
identify unknowns. Importantly, we exclude comparisons to
methods that rely on known-unknown samples during training,
focusing instead on approaches applicable to purely open-set
scenarios.

All methods are trained on the same dataset split using SGD
with standard L2 regularization. We use ResNet18 for ϕmain

and retain the original architecture and hyperparameters from
[8] for ϕsecondary to ensure a fair comparison. For consistency,
ResNet18 is used across all other methods unless otherwise
specified.

B. Results Comparison

We first evaluate the performance of our method vs. all other
compared methods from an AUROC standpoint. Table I shows
the AUROC results averages across 3 runs for all methods.
We observe that our method either outperforms or is very
competitive compared to all other methods. We take particular
note in the performance gains when testing on the Tiny-
ImageNet case. Our method clearly outperforms all others on
this much more difficult dataset.

Of note is our method compared directly to the softmax
baseline and CAC. The solution proposed in Section II is
actually a combination of each method as ϕmain outputs its
probabilities using the softmax function and ϕsecondary is
trained using the CAC loss as proposed in [8]. In all cases
our method handily outperforms both the isolated trials of the
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Fig. 3: CIFAR+10 probability calibration curves of main
classifier, secondary classifier, and joint estimation for (a)
known test samples, (b) unknown test samples.

softmax baseline and CAC demonstrating that the probability
joint estimation using both softmax and CAC yields superior
known recognition and unknown detection performance.

We additionally report the results of our method in the re-
verse order. The secondary network could be used as the main
classifier simply by assigning x to the class corresponding with
largest probability value. Thereafter, we select the confidence
score of the first network for the same class. Using the notation
in Section II-C, this takes the form of

p(ŷi, ỹi|x) = p(ŷi|ỹi, x)p(ỹi|x) (7)

where we emphasize that ϕmains’s prediction ŷi is now
conditioned on ϕsecondary’s prediction of ỹi. If we compare
this form to Equation 6 we see that the joint probability
calculation has essentially been reversed. The results of these
experiments are reflected in Table I by Ours (Reversed). Even
in the reverse case, we can once again infer that our method
either outperforms or is very competitive with all compared
methods, and once again handily outperforms the individual
methods of the softmax baseline and CAC.

C. Effect of Joint Probability Estimation

We assess whether our joint probability estimation effec-
tively distinguishes known from unknown samples by analyz-
ing predicted probabilities on the CIFAR+10 dataset. Figure
2 shows histograms for ϕmain, ϕsecondary, and our joint
method. While ϕmain gives high confidence for knowns, its
unknown predictions are widely spread, making separation
difficult. ϕsecondary shows similar trends for knowns but is
overconfident for unknowns, with a peak near 1. In contrast,
our joint estimation pushes unknown probabilities toward 0,
creating clearer separation—though a small number of knowns
are also misclassified as unknowns.

Figure 3 presents probability calibration diagrams to further
evaluate prediction reliability. Our joint estimation demon-
strates the best calibration, aligning predicted probabilities
more closely with true class likelihoods. Unlike ϕmain and
ϕsecondary, which often assign high probabilities to unknowns,
our method consistently lowers confidence for unknown in-
puts, supporting improved open-set recognition.

IV. CONCLUSION

We propose a joint probability estimation method to classify
inputs and identify unknown categories without using known-
unknowns during training. Our approach outperforms indi-
vidual solutions like softmax analysis and CAC’s prototype
method while remaining competitive with or surpassing mod-
ern state-of-the-art methods. It effectively drives unknown
sample probabilities to zero while maintaining high probabil-
ities for known samples, as shown in probability histograms
and calibration curves.
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